切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2015, Vol. 09 ›› Issue (04) : 275 -279. doi: 10.3877/cma. j. issn.1674-0807.2015.04.010

讲座

乳腺癌紫杉醇耐药的机制
陈伟1, 季明华2, 唐金海2,()   
  1. 1.221000 徐州医学院研究生学院肿瘤学系
    2.210009 南京医科大学附属江苏省肿瘤医院普外科
  • 收稿日期:2014-07-18 出版日期:2015-08-01
  • 通信作者: 唐金海

Research progress on paclitaxe-resistance mechanism of breast cancer

Wei Chen, Minghua Ji, Jinhai Tang()   

  • Received:2014-07-18 Published:2015-08-01
  • Corresponding author: Jinhai Tang
引用本文:

陈伟, 季明华, 唐金海. 乳腺癌紫杉醇耐药的机制[J/OL]. 中华乳腺病杂志(电子版), 2015, 09(04): 275-279.

Wei Chen, Minghua Ji, Jinhai Tang. Research progress on paclitaxe-resistance mechanism of breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2015, 09(04): 275-279.

[1]
Le XF,Bast RC Jr. Src family kinases and paclitaxel sensitivity[J].Cancer Biol Ther,2011,12(4):260-269.
[2]
Perez EA. Paclitaxel in breast cancer[J]. Oncologist,1998,3(6):373-389.
[3]
Wall ME,Wani MC,Taylor H. Plant antitumor agents, 27.Isolation, structure, and structure activity relationships of alkaloids from Fagara macrophylla [J]. J Nat Prod,1987,50(6):1095-1099.
[4]
McGrogan BT, Gilmartin B, Carney DN, et al. Taxanes,microtubules and chemoresistant breast cancer [J]. Biochim Biophys Acta,2008,1785(2):96-132.
[5]
Smoter M, Bodnar L, Duchnowska R, et al. The role of Tau protein in resistance to paclitaxel [J]. Cancer Chemother Pharmacol,2011,68(3):553-557.
[6]
Rouzier R, Rajan R, Wagner P, et al. Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer[J]. Proc Natl Acad Sci U S A,2005,102(23):8315-8320.
[7]
Tanaka S, Nohara T, Iwamoto M, et al. Tau expression and efficacy of paclitaxel treatment in metastatic breast cancer[J].Cancer Chemother Pharmacol,2009,64(2):341-346.
[8]
Liao CF, Luo SF, Shen TY, et al. CSE1L/CAS, a microtubule-associated protein, inhibits taxol ( paclitaxel)-induced apoptosis but enhances cancer cell apoptosis induced by various chemotherapeutic drugs [J]. BMB Rep, 2008,41(3):210-216.
[9]
McKean PG, Vaughan S, Gull K. The extended tubulin superfamily[J].J Cell Sci,2001,114(Pt 15):2723-2733.
[10]
Verdier-Pinard P, Pasquier E, Xiao H, et al. Tubulin proteomics: towards breaking the code[J]. Anal Biochem,2009,384(2):197-206.
[11]
Kavallaris M. Microtubules and resistance to tubulin-binding agents[J].Nat Rev Cancer,2010,10(3):194-204.
[12]
Stengel C, Newman SP, Leese MP, et al. Class Ⅲbetatubulin expression and in vitro resistance to microtubule targeting agents [J]. Br J Cancer,2010,102(2):316-324.
[13]
Ganguly A, Yang HL, Cabral F. Class Ⅲ β-tubulin counteracts the ability of paclitaxel to inhibit cell migration[J]. Oncotarget,2011,2(5):368-377.
[14]
Kamath K,Wilson L,Cabral F, et al. Beta Ⅲ-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability [J]. J Biol Chem, 2005,280(13):12 902-12 907.
[15]
Banerjee A. Increased levels of tyrosinated alpha-, beta(Ⅲ)-,and beta(Ⅳ)-tubulin isotypes in paclitaxel-resistant MCF-7 breast cancer cells[J].Biochem Biophys Res Commun, 2002,293(1):598-601.
[16]
Panda D, Miller HP, Banerjee A, et al. Microtubule dynamics in vitro are regulated by the tubulin isotype composition[J].Proc Natl Acad Sci U S A,1994,91(24):11 358-11 362.
[17]
Paradiso A, Mangia A, Chiriatti A, et al. Biomarkers predictive for clinical efficacy of taxol-based chemotherapy in advanced breast cancer [J]. Ann Oncol,2005,16 Suppl 4:iv14-19.
[18]
Tommasi S, Mangia A, Lacalamita R, et al. Cytoskeleton and paclitaxel sensitivity in breast cancer: the role of beta-tubulins[J]. Int J Cancer,2007,120(10):2078-2085.
[19]
Wang H, Vo T, Hajar A, et al. Multiple mechanisms underlying acquired resistance to taxanes in selected docetaxelresistant MCF-7 breast cancer cells[J]. BMC Cancer,2014,14:37.
[20]
Wiesen KM, Xia S, Yang CP, et al. Wild-type class Ⅰbetatubulin sensitizes Taxol-resistant breast adenocarcinoma cells harboring a beta-tubulin mutation [J]. Cancer Lett,2007,257(2):227-235.
[21]
Löwe J, Li H, Downing KH, et al. Refined structure of alpha beta-tubulin at 3.5 A resolution [J]. J Mol Biol, 2001,313(5):1045-1057.
[22]
Ravelli RB, Gigant B, Curmi PA, et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain[J].Nature,2004,428(6979):198-202.
[23]
Yin S,Bhattacharya R,Cabral F. Human mutations that confer paclitaxel resistance [J]. Mol Cancer Ther, 2010, 9(2):327-335.
[24]
Wang Y, Yin S, Blade K, et al. Mutations at leucine 215 of beta-tubulin affect paclitaxel sensitivity by two distinct mechanisms[J]. Biochemistry,2006,45(1):185-194.
[25]
Ganguly A, Cabral F. New insights into mechanisms of resistance to microtubule inhibitors[J].Biochim Biophys Acta,2011,1816(2):164-1671.
[26]
Maeno K,Ito K,Hama Y, et al. Mutation of the class I betatubulin gene does not predict response to paclitaxel for breast cancer[J].Cancer Lett,2003,198(1):89-97.
[27]
Mulrane L, McGee SF, Gallagher WM, et al. miRNA dysregulation in breast cancer[J]. Cancer Res,2013,73(22):6554-6562.
[28]
朱安婕,袁芃.微小RNAs 在乳腺癌中的应用价值[J/CD].中华乳腺病杂志:电子版,2014,8(3):211-214.
[29]
Hu Q,Chen WX,Zhong SL, et al. MicroRNA-452 contributes to the docetaxel resistance of breast cancer cells[J]. Tumour Biol,2014,35(7):6327-6334.
[30]
Zhou M, Liu Z, Zhao Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1)expression[J]. J Biol Chem,2010,285(28):21 496-21 507.
[31]
Zhong S, Li W, Chen Z, et al. MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells[J].Gene,2013,531(1):8-14.
[32]
Mei M, Ren Y, Zhou X,et al. Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells[J]. Technol Cancer Res Treat,2010,9(1):77-86.
[33]
Li M,Li J, Ding X, et al. MicroRNA and cancer[J]. AAPS J,2010,12(3):309-317.
[34]
Jiang YZ,Yu KD,Peng WT,et al. Enriched variations in TEKT4 and breast cancer resistance to paclitaxel [J]. Nat Commun,2014,5:3802.
[35]
Vtorushin SV, Khristenko KY, Zavyalova MV, et al. The phenomenon of multi-drug resistance in the treatment of malignant tumors[J]. Exp Oncol,2014,36(3):144-156.
[36]
Shi JF,Yang N,Ding HJ,et al. ERα directly activated the MDR1 transcription to increase paclitaxel-resistance of ERαpositive breast cancer cells in vitro and in vivo [J]. Int J Biochem Cell Biol,2014,53:35-45.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[7] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[8] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[9] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[10] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[13] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[14] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[15] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
阅读次数
全文


摘要